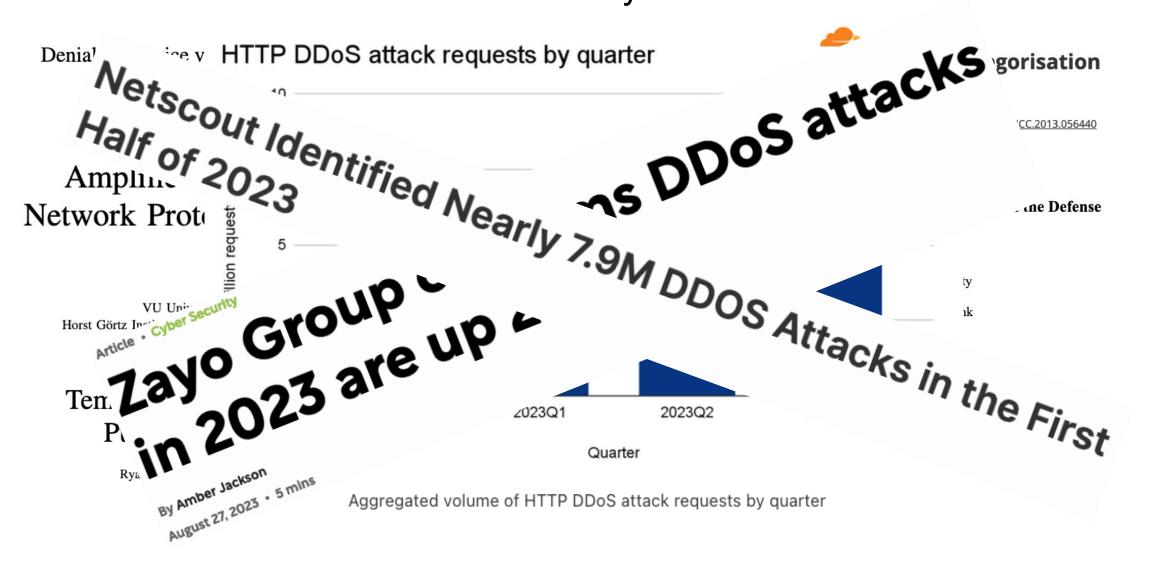
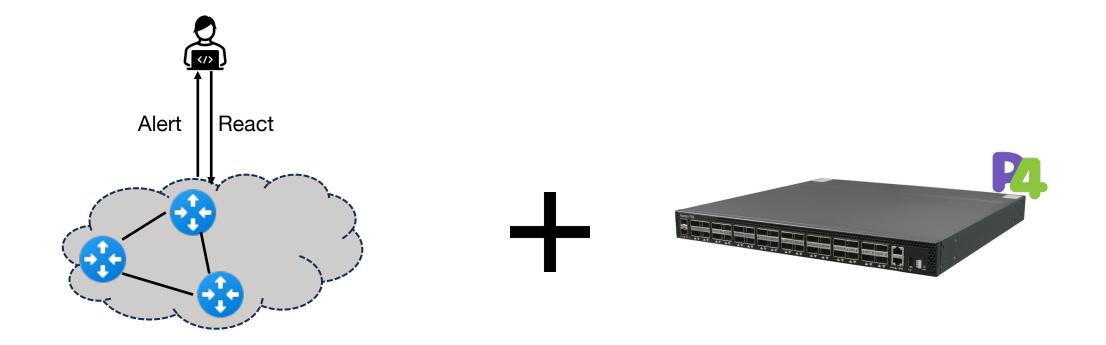
LANTERN: Layered Adaptive Network Telemetry Collection for Programmable Dataplanes [EuroP4' 23]

Kaiyu Hou Alibaba Cloud Dhiraj Saharia Georgetown University Vinod Yegneswaran SRI International Phillip Porras SRI International


GEORGETOWN UNIVERSITY



Motivation

DDoS is a well studied area in many different forms

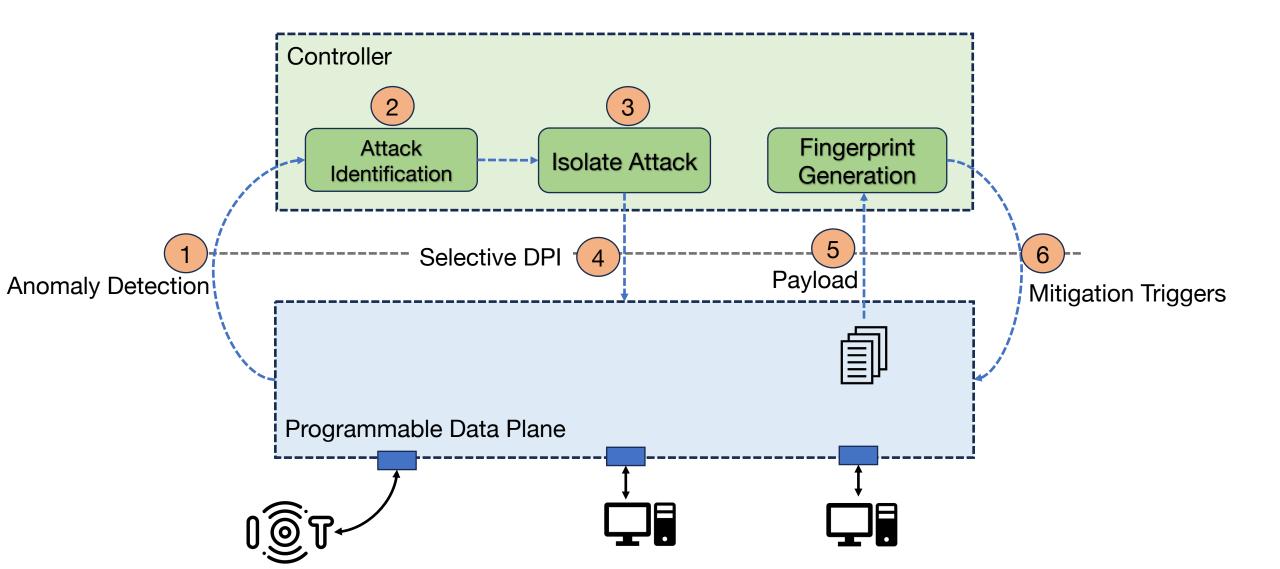
P4 as a Solution?

Enabling the dataplane to dynamically adjust telemetry collection based on emergent network traffic patterns.

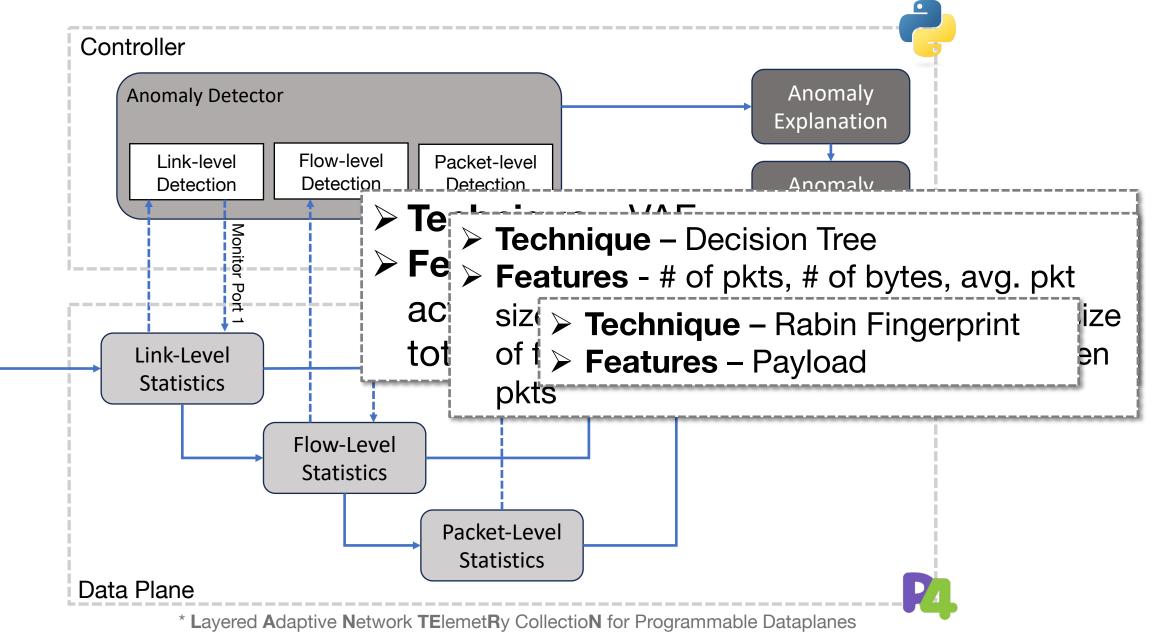
High line rate processing (e.g. – Tbps)
 Programmability using DSLs such as P4

Method	Approach	Controller	Adaptive Telemetry	Data Plane Alert	Mitigating Triggers
Stats101	Online Computation	Yes	By Controller	Yes	No
Sonata	Reactive Query	Yes	Reactive by Admin	No	By Admin
DynATOS	Reactive Query	Yes	Reactive by Admin	No	By Admin
Poseidon	Predefined DP Policy	Yes	Policy-based	Yes	DDoS only
Jaqen	Sketch-based	Yes	No	Yes	DDoS only

Method	Approach	Controller	Adaptive Telemetry	Data Plane Alert	Mitigating Triggers
Stats101	Online Computation	Yes	By Controller	Yes	No
Sonata	Reactive Query	Yes	Reactive by Admin	No	By Admin
DynATOS	Reactive Query	Yes	Reactive by Admin	No	By Admin
Poseidon	Predefined DP Policy	Yes	Policy-based	Yes	DDoS only
Jaqen	Sketch-based	Yes	No	Yes	DDoS only

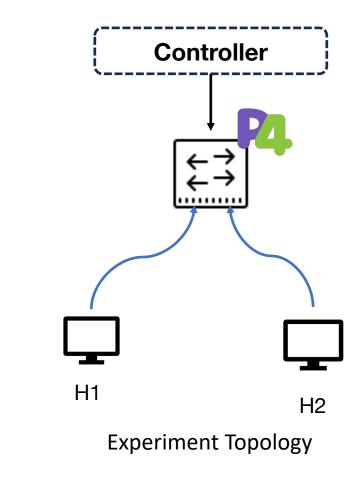


Method	Approach	Controller	Adaptive Telemetry	Data Plane Alert	Mitigating Triggers
Stats101	Online Computation	Yes	By Controller	Yes	No
Sonata	Reactive Query	Yes	Reactive by Admin	No	By Admin
DynATOS	Reactive Query	Yes	Reactive by Admin	No	By Admin
Poseidon	Predefined DP Policy	Yes	Policy-based	Yes	DDoS only
Jaqen	Sketch-based	Yes	No	Yes	DDoS only

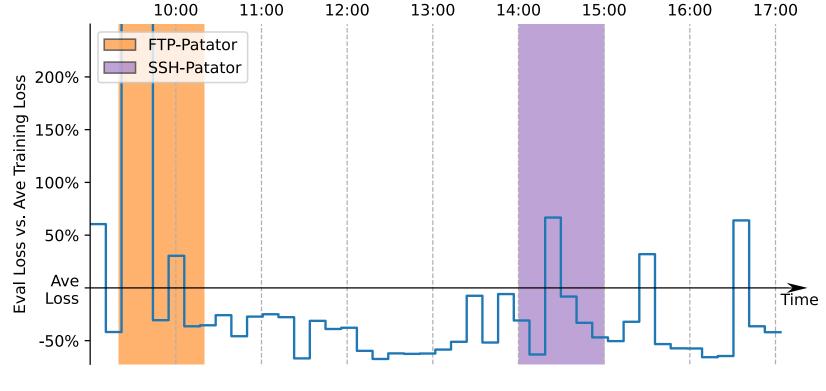


Method	Approach	Controller	Adaptive Telemetry	Data Plane Alert	Mitigating Triggers
Stats101	Online Computation	Yes	By Controller	Yes	No
Sonata	Reactive Query	Yes	Reactive by Admin	No	By Admin
DynATOS	Reactive Query	Yes	Reactive by Admin	No	By Admin
Poseidon	Predefined DP Policy	Yes	Policy-based	Yes	DDoS only
Jaqen	Sketch-based	Yes	No	Yes	DDoS only
LANTERN	Layer-based ML	Yes	Layer-based	Yes	Diverse attacks

Vision Scenario - Internal → External IoT DDoS Attack

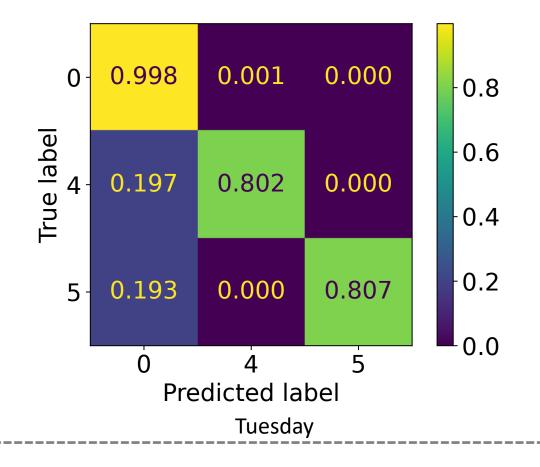


LANTERN*: System Overview



Evaluation Setup

- Dataset CIC-IDS [LINK]
 - Model trained on Monday benign traffic
 - Tested on Tuesday, Wednesday, and Friday traffic
- Testbed
 - 1 switch (bmv2, Tofino)
 - 2 end hosts (mininet)
 - Python based controller


Evaluation: Link-Level Anomaly Detection

Tuesday

Key Takeaways
 VAEs can detect vast majority of attacks with limited telemetry
 False positives can be corrected at the next layer

Evaluation: Flow-Level Attack Classification

Key Takeaway

Decision Tree can perform attack classification using flow features with high accuracy

Unbalanced dataset

Evaluation: Packet Level Mitigation

- Sample packets from attack flows
- Background flows \rightarrow Benign
- Eliminate from candidate signatures

Algorithm 1: Fingerprint-based attack mitigation

Input : *attack_flows*, *benign_flows* **Output**: *mitigation_rules*

1 for flow *in* attack_flows do

```
2 \quad \lfloor \quad cand\_sigs \leftarrow cand\_sigs \cap \{ \text{Rabin Fingerprint}(flow[1:4]) \}
```

3 for flow *in* background_flows do

```
4 \lfloor cand\_sigs \leftarrow cand\_sigs - \{\text{Rabin Fingerprint}(flow[1:4])\}
```

5 for sig *in* cand_sigs do

 $rules \leftarrow rules \cup \{ Match: raw(sig), Action: reject(src_ip) \}$

'\nAccept-Encoding: gzip, deflate\r\nAccept'
'on: keep-alive\r\nAccept-Encoding: gzip,'
'08.1 HTTP/1.1\r\nHost: 205.174.165.73:808'

Exemplar Benign Signature

't: */*\r\nUser-Agent: python-requests/2.1'
': */*\r\nUser-Agent: python-requests/2.14'
'*/*\r\nUser-Agent: python-requests/2.14.2'

. . .

'api/pop?botid=mitacs-pc6&sysinfo=Window'
'api/pop?botid=mitacs-pc4&sysinfo=Window'

'botid=mitacs-pc6&sysinfo=Windows%207 HT'
'botid=mitacs-pc4&sysinfo=Windows%2010 H'

Exemplar Attack Signature

 Key Takeaway
 ➢ Our detection algorithm captured all 187 attack flows without false positives.

Evaluation: Resource / Performance

• Hardware Utilization

Resource	Usage
TCAM	0
SRAM	8.75%
VLIW	6.77%
Map RAM	13.89%

- Latency
 - Compared against basic forwarding program
 - ~7ns overhead on average across 2000 packets

Conclusion and Future Work

 Proposed a layered approach for dynamically adjustable tunable telemetry collection to make it easier to integrate different types of ML algorithms to defend against security threats
 VAEs DTs Babin Eincerprints

 \checkmark VAEs, DTs, Rabin Fingerprints

✓Validated our layered approach using the CIC-IDS dataset and conducted a performance evaluation of the system.

Ongoing/Future Work

Offloading ML algorithms to data plane + switch native implementation of mitigating triggers

Scalability testing on diverse datasets

Questions? Thank You

Dhiraj Saharia Email: <u>ds1849@georgetown.edu</u> Web: <u>https://dsaharia.com</u> Lab: <u>https://seclab.cs.georgetown.edu/</u>